

Haptic Interface

Ed Colgate* September 23, 1999

*President, CoMoCo, Inc.
On leave from Northwestern University

Outline

- Human-robot interaction -- a brief taxonomy
- State-of-the-art in haptic devices
- Some of what we know about haptics
- Some challenges in haptics
- Cobots -- what they are and why they're relevant
- Concluding observations

State-of-the-art in haptic devices

- A sampling of devices
 - small and large
 - handle-based and exoskeletal

Feel-It Mouse

- Logitech (licensed from Immersion Corp.)
- Available 9/99, \$99
- Guesstimated specs:
 - -2 dof
 - -0.5"x0.5"
 - 5 oz peak force

Phantom

- SensAble Devices
- A few thousand dollars
- 3 dof
- 6"x5"x5"
- 1.45 lb peak force

SpacePen

- Immersion Corp
 - licensed from Cybernet
- 6 dof
- Body-scale workspace

CyberGrasp

Virtex Corp.

- Exoskeleton for the hand
- 2.8 lbs continuous force per finger

Full-Arm and Body Devices

 Kazerooni's extenders SARCOS' Dextrous Arm Master

Other exoskeletons

- EFF
 - Bergamasco, Pisa
 - 7 dof

- PHI
 - Hurmuzlu, SMU
 - 4 dof

Some of what we know...

- Transmissions!!!!
- Update rates >500 Hz
- Stiffness >8000 N/m
 - for small-scale displays
 - not enough known about scaling
- Distal attribution

Challenge: dynamic range

____ Impedance devices _____

Admittance devices

More Challenges

- understanding haptic perception
- high degree-of-freedom devices
- large-scale displays

Cobots

A cobot is a robot that won't move on its own, but will *guide and assist* motions imparted by a human operator

Cobots

- COMOCO collaborative motion control
- force sensor support rails
- Cobots implement virtual surfaces via "servosteered" joints
- Cobotic surfaces are programmable, passive, smooth and hard

steering motor

The simplest cobot: a single wheel rolling on a plane

wheel

planar rolling surface

Other cobots...

Why cobots are relevant

- Low power consumption
- Reaction forces stem from the mechanics of the cobot joint, not from actuators
 - actuators used only to redirect power

Concluding observations

Gripping

- Approaches:
 - human hand ... perhaps augmented
 - standardized interface (e.g., pallets)
 - mechanical nightmares...

Tool for gripping a car door

Finally... System Integration!

- Two keys:
- distributed intelligence & high speed serial communications (e.g. "FireWire")
 - essential to minimize wire count and connector count
 - requires "smart" sensors and actuators
- "open architecture" environment for haptic systems